

Pose Estimation of a Robot Arm from a Single
Camera

Kiruthikan Sithamparanathan
Department of Electrical Engineering

University of Moratuwa
Moratuwa, 10400, Sri Lanka
kiruthikan.s@outlook.com

Sarangan Rajendran
Department of Electrical Engineering

University of Moratuwa
Moratuwa, 10400, Sri Lanka

saranganr@outlook.com

A.M. Harsha S. Abeykoon
Department of Electrical Engineering

University of Moratuwa
Moratuwa, 10400, Sri Lanka

harsha@uom.lk

 Pirakash Thavapirakasam
Department of Electrical Engineering

University of Moratuwa
Moratuwa, 10400, Sri Lanka

pirakashthavapirakasam@outlook.com

Abstract— This paper describes a vision based deep learning
approach to estimate the pose of a robot arm from a single
camera input, without any depth information. Conventionally,
pose of robot arm is determined using encoders which sense the
joint angles, and then the pose of each link (including the end
effector) relative to the robot base is obtained from the direct
kinematics of the manipulator. But there may be inaccuracies in
the determined pose when the encoders or the manipulators are
malfunctioning. This paper presents an approach based on
computer vision, where a single RGB camera is fixed at a
distance from the robot arm. Based on the kinematics of the
manipulator and the calibrated camera, the input 2-dimensional
image is reconstructed in 3-dimensional form and the pose of the
manipulator is determined by means of a deep network model
trained on synthetic data. Furthermore, a graphical user
interface (GUI) is developed, which simplifies the output
interpretation for users who operate the implemented system.
Finally, the effectiveness of the proposed approach is
demonstrated via several examples and results are presented.
The proposed approach cannot entirely replace the function of
encoders. Instead, it can be treated as a backup method which
provides a reference solution.

Keywords—— robot arm, pose estimation, 3D object
reconstruction, convolutional neural network, deep learning

I. INTRODUCTION

A robot arm is a system of serially connected links that are
moved by rotating about the joints actuated by motors. It is
considered to be moving in a three-dimensional workspace,
and the term ‘pose’ is defined as the combined position and
orientation of all of its links at a given instance. Each joint has
an encoder mounted inside to measure the degree of actuation.
For a rotary joint, this encoder-measured value is called ‘joint
angle’. Therefore, for a robot arm consisting only of rotary
joints, pose essentially becomes the combination of all the
joint angles at a given time. It is fundamental for fulfilling the
feedback requirement of motion control. When the kinematics
of the robot arm and the current joint angles are known, the
pose of the robot arm, and thus the position and orientation of
the end effector relative to the base of the robotic manipulator
can be computed. However, getting good estimates for these
angles can be difficult due to inaccuracies such as joint
frictions or malfunctioning encoders. Therefore in many
robotic systems, there exists a gap between where the robot
estimates its arm to be and where it really is. This becomes a
major issue especially in manipulation tasks. Also, in
situations where incremental encoders are used instead of
absolute encoders for robot arms, there will be a need to know

the previous pose in order to determine the current pose.
Therefore, additional techniques for estimating the robot
arm’s pose are considered necessary. This paper proposes a
visual approach to figuring out the pose of a robotic
manipulator from an RGB image taken by a single camera.

An RGB image which is 2-dimensional cannot inherently
describe the pose, which is a 3-dimensional quality. Most of
the researches addressing pose determination of a robot arm
by visual methods rely on additional means to bridge this lack
of depth information. Most popular approach is to attach
markers on the surface of the robot arm or create track points
on images using edge detection algorithms and track them to
estimate the pose [1][2][3]. The main limitation of this kind of
approach is that these markers or track points must always be
in sight of the camera to predict the pose effectively, which
constraints the estimable poses of the robot arm in space.

Bohg et al. overcame the need for markers by using RGB-
Depth cameras detect the robot arm in 3D space [4]. In their
method, the estimation problem was transformed into a
classification problem where each pixel in a depth image was
classified to be either robot or background and was input to
train a random decision forest. Later on, they employed a
random regression forest trained on synthetically generated
data for the pose estimation task [5]. This method also used
depth images to estimate the angular joint positions without
any prior knowledge from the joint encoders, and the approach
also worked on real depth images. While this solution is highly
competent, it still requires depth information that cannot be
supplied by a regular RGB camera that outputs 2D images.

Deep Learning has recently been growing as the preferred
mode of research for studies that involve large volume of data,
particularly images, as it is capable of solving 2D-image tasks
such as image classification, object detection, semantic
segmentation, etc. Few researchers have utilized it for the
problem of robot arm pose estimation too. Miseikis et al. had
collected some datasets and trained the multi-objective
network for robot pose estimation and localization tasks [6].
Recent studies have shown that deep learning can also be
employed to predict 3D volume of objects from 2D images
with moderate success. Lin et al. proposed a framework to
efficiently predict the 3D structure of an object in the form of
point clouds using 2D convolutions [7]. Since a 3D volumetric
prediction adds a new dimensional information which was not
present 2D image input, it opens an avenue of research
potential to employ it for the pose estimation problem, which
has not been tested till now.

This paper proposes a simpler, modified approach to
predict 3D volume from a 2D image of the manipulator and
use it to estimate the pose. Lin et al. had tested and
demonstrated their model on everyday domestic objects
whose models are imported from ShapeNet repository [7].
Since the target object in our case is more specific, we opted
to model our robot arm virtually and create our own synthetic
database of poses. In our approach, the robot arm extracted
from a 2D RGB image is reconstructed as a 3D point cloud
using a Perspective Generator pipeline. Two different
datasets, one as 2D pose images and other as vertices of the
3D surface of robot arm, are generated and trained upon to
achieve this volumetric prediction. This reconstructed point
cloud is then input to a pose estimator network to predict the
joint angles. This proposed method cannot entirely replace
encoders but can be treated as a reference solution to validate
the accuracy of joint angle readings when there are possible
malfunctions in the encoders or the manipulator.

This paper is organized as follows. Section II describes the
modelling of the robot arm manipulator and its kinematics
required for the synthetic generation of the pose image
database. Section III presents the proposed framework to
determine the pose of the robot arm manipulator. Section IV
describes the types of input data used and how they are
prepared. Section V evaluates the model with experiments and
shows their results. Section VI concludes the contributions of
this study.

II. MODELLING OF THE MANIPULATOR

In order to demonstrate the proposed approach, a ‘KUKA
KR 6 R900 sixx’ robot arm manipulator is considered in this
study. It has six degrees of freedom, and all joints are revolute.
The six joints and their axis of rotations are as illustrated in
Fig. 1, where the positive and negative directions of each of
the joint angle is marked.

The relationship of one joint axis frame’s position and
orientation with respect to a previous joint axis frame is
described by transformation matrices. By post-multiplication
of successive transformation matrices, it is possible to relate
the position and orientation of any point in the robot arm with
respect to the base frame of the robot arm manipulator.

Fig. 1. Joint Angles in selected KUKA Robot Arm

In order to train the deep learning model to identify a robot
arm and figure out its pose from a camera image, a large
database of images from the camera viewpoint with different
poses of the robot arm should be created. Considering the
volume of the input database, and repeatability of the process,
it was decided to model the robot arm manipulator
synthetically in a virtual environment. Recent studies have
shown that synthetically generated images can be successfully
used as training input data for a real-world application with
minimal deviations in expected output [5][8]. In the study
conducted by Lee et al, it was shown that by training a neural
network with images of synthetically modelled robot arm, it
was possible to find an external camera’s transformation
matrix with respect to a real robot arm [8]. In our study, each
link of the selected robot arm manipulator was modelled in
Blender® software as separate independent objects and were
applied motion constraints derived from transformation
matrices to mimic real joints.

III. PROPOSED APPROACH

Overview of the system is illustrated in Fig. 2. Table I
contains the associated nomenclature. The system consists of
three main components: perspective generator, pose estimator
and optimizer.

Fig. 2. System Overview. Processes marked with orange arrows are part of the training stage of the model and are not used once the model is trained.

TABLE I
NOMENCLATURE

Symbol Description

[θ]ref Reference Joint Angles (input during training)

[θ]predict Joint Angles Predicted by Pose Estimator

[θ]out Optimized Joint Angles (final output)

[TP] Pose Transformation Matrix

[TV] Viewpoint Transformation Matrix

[TV]-1 Inverse of Viewpoint Transformation Matrix

[P] initial Untransformed Point Cloud at home position

[P] ref Transformed Point Cloud at desired pose

[P] predict Predicted Point Cloud at desired pose

Perspective generator component takes the 2D RGB image
as input and predicts a 3D representation of the robot arm at
multiple viewpoints. The suitable form of 3D representation
was found to be point cloud, where the vertices of the robot
arm’s outer surface make up the points, as shown in Fig. 3.
Compared to other forms of 3D representation such as voxels,
point cloud is light on memory and computation [7]. The
predicted point cloud is then sent through pose estimator
component where the joint angles are estimated through linear
regression. The optimizer component improves the accuracy
of the model in predicting the joint angles.

Fig. 3. 3D representation of the robot arm

As indicated in Fig. 2, a point cloud of the robot arm in its
home position must be input to the system initially, to be
considered as the untransformed point cloud ([�]�������) .
Home Position refers to the robot configuration where all joint
angle values are zero.

A. Perspective Generator

This is a fully convolutional neural network (CNN) as
illustrated in Fig. 4, whose input is an image which is stored
as an array of size h×v×3, where h and v denote the horizontal
and vertical pixel resolutions of the image, and 3 indicates the
RGB colour channel information of each pixel. The output of
the CNN is a set of 3D point clouds of the same robot arm
configuration observed from different viewpoints. This is
stored as an array of size n×m×3, where n denotes the number
of viewpoints, m denotes the number of points in the robot arm
point cloud, and 3 indicates the cartesian coordinate
information of each point.

Fig. 4. Convolutional Neural Network Architecture

In order to train the perspective generator to predict the
viewpoints correctly from an image, the reference viewpoints
corresponding to the robot arm with the same pose as in the
image must be given. The generation of these reference
viewpoints is carried out in two steps. First, the
untransformed point cloud of the robot arm at its home
position is transformed to the pose in the image by using Pose
Transformation matrices.

When a rotation is made on the nth joint of the robot arm
point cloud, the reference frame defined at that joint is rotated
by the same angle of rotation as shown in Fig. 5. All the points
that belong to the links that lie after the nth joint are affected
by this rotation. However they remain in the same coordinates
with respect to nth reference frame before and after the
rotation, since the frame too has rotated.

Fig. 5. Coordinate frames before and after transformation

Therefore, effectively, rotation applied to a point while
keeping its reference frame fixed is equivalent to applying
that same rotation to the reference frame while keeping the
point fixed with respect to the frame. Therefore, the point
cloud of a jth link (which lies after the nth joint) referred to a
previous frame can be written as in equation (1)

[����� �]���
��� = [��

���] × [����� �]�������
� (1)

Here [����� �]���
��� denotes the point cloud of the link at

(n-1)th frame after applying the rotation to nth joint.
[����� �]�������

� denotes the point cloud of the link at nth frame

before rotation. [���
���] denotes the transformation matrix

from (n-1)th reference frame to nth reference frame after
rotating the nth frame by the relevant joint angle.

This can be expanded to refer the point cloud in its base
frame, by multiplying by the rotation matrices corresponding
to previous joint frames, as shown in equation (2)

[����� �]���
� = [��

�]. . [��
���] × [����� �]�������

� (2)

The combined multiplication of all these transformation
matrices in equation (2) can be considered as the Pose

Transformation Matrix corresponding to the nth joint (���,��),

and it should be applied to all the points that lie after the nth
joint. This procedure should be repeated six times to apply all
the joint angles progressively from the 1st joint to the 6th joint.
After all six angles are applied, the transformed point cloud
will resemble the robot arm in the input image, and is referred
to as the reference point cloud ([�]���).

Once the reference point cloud with the same pose as in
the image is obtained, the second step is to transform that
point cloud to different viewpoints by using Viewpoint
Transformation matrices. Each viewpoint is defined as a
defined rotation of a camera frame (that is at a fixed distance
away from the base of the robot) in a spherical coordinate
system having the robot arm base frame at its centre. The shift
from robot’s base frame to a viewpoint’s camera frame is
given by a transformation matrix, as in equation (3)

 [�]���
�� = [��

��] × [�]���
� (3)

Here, [�]���
�� denotes the first viewpoint of the point

cloud. [��
��] denotes the transformation matrix from the

base frame to the first viewpoint’s camera frame, also
referred to as the first Viewpoint Transformation Matrix

(���,��). This procedure is repeated until desired number of

reference viewpoints are obtained. Viewpoints can be varied
by changing the azimuth angle and polar angle to desired
values. In this experiment, it was decided to use four
viewpoints.

After the reference viewpoints are generated, they are
compared with predicted viewpoints and the error is used to
refine the predictions. This training is carried out until the
error in the final output falls inside a small, fixed margin.

B. Pose Estimator

The output from the perspective generator contains robot
arm point clouds at different viewpoints. The point clouds in
these viewpoints are then transformed to one common
viewpoint (same as the viewpoint of the untransformed point
cloud) using inverse of viewpoint transformation matrices,
and the average of the coordinate values are taken for each
point to obtain predicted point cloud ([�]���).

Now, the untransformed point cloud at the home position,
and the predicted point cloud at the desired pose are in the
same viewpoint. Regardless of the poses, the origins of the 1st
joint’s reference frame in both point clouds will be at the same
location, meaning that the displacement vector between those
two frames is zero.

Therefore, it is possible to apply a rotation to the 1st joint
of untransformed point cloud in such a way that its 1st link can
coincide with the 1st link of predicted point cloud, as shown in
equation (4)

 [����� �]�������
� = [���] × [����� �]�������

� (4)

Here, [����� �]�������
� denotes the points belonging to 1st

link in the predicted point cloud expressed in 1st joint’s frame,
[����� �]�������

� denotes the points belonging to 1st link in the
untransformed point cloud expressed in 1st joint’s frame.

Since [����� �]�������
� and [����� �]�������

� are known, the

unknown variable [���] can be estimated using linear
regression, and it results in a 3 × 3 rotation matrix. This

corresponds to the rotation that should be applied to 1st joint,
for the points of the 1st link in untransformed point cloud to
coincide with the points of the 1st link in predicted point cloud.
The first joint angle (θ1) can then be estimated by comparing
each element of the generated rotation matrix to a standard
rotation matrix expressed as a mathematical function.

After θ1 is estimated, -(θ1) is applied to the predicted point
cloud, to eliminate the effect of rotation of the 1st joint from
the rest of the robot. Now the origins of 2nd joint’s reference
frame in both point clouds will be at the same location. By
repeating the same procedure, all six joint angles can be
estimated through linear regression.

C. Optimizer

If a part of the robot arm is not visible in the image, then
the 3D prediction corresponding to that part can include false
points and may not represent the pose correctly. Therefore, the
falsely represented data points have to be eliminated from the
predicted point cloud for better estimation of joint angles.

In order to eliminate the falsely predicted points, the
untransformed point cloud at home position is transformed
with the predicted set of joint angles by using pose
transformation matrices. This new, transformed point cloud
and predicted point cloud are then superimposed and the
absolute displacement error for each point in both point clouds
is calculated. The point with the highest value of error is
considered a false prediction and is therefore eliminated. Joint
angles are then estimated again by linear regression similar to
the pose estimator component. This process is repeated until
the maximum error falls below a predefined value, eliminating
the false predictions as much as possible, as shown in Fig. 6.
This results in an optimized set of joint angles which is the
final output from the system.

Fig. 6. Representation of predicted and transformed vertices.

A disadvantage in estimation of pose by regression is that
the errors in the joint angles will get accumulated when joint
angles are estimated progressively from the 1st joint.
However, the main reason for falsely predicted vertices is poor
visibility and the chances of the first few joints being poorly
visible are quite low compared to the latter joints. Therefore,
the effect of error accumulation will not be significant.

IV. DATA GENERATION

Two sets of data are required to implement the proposed
approach: RGB images of the robot arm poses and the 3D
representation with surface points of the corresponding pose
in multiple viewpoints.

The RGB images of poses are generated using Blender’s
EEVEE render engine. To minimize the gap between real and
synthetic data, domain randomization techniques were
employed, including random placement of distractor objects
in the background, variation of colour intensity, variation of
texture of wall and floor and variation of number of lights in
the scene and their position [9].

The point cloud representation of the robot arm consists of
significantly high number of vertices. The computational cost
of training a neural network to predict all the vertices would
be very high. Vertices that are closer to each other would have
less significance in predicting the pose. Therefore, the number
of vertices have to be reduced to make the model
computationally efficient and accurate. Reduction in the
number of vertices is carried out in two steps: Pearson’s
Correlation Coefficient and Wrapper Feature Selection.

Pearson’s correlation coefficient is a measure of linear
correlation between two sets of data. A database of vertex
coordinates for different poses is created and the dependency
between each vertex point is calculated using the Pearson’s
coefficient formula and presented as a matrix. Higher
adjacency values between two vertices indicate that they are
highly dependent on each other and are therefore eliminated.

These reduced vertices are then passed through a wrapper
filter-based feature selection algorithm. This calculates the
individual effect of all the vertices in determining the overall
outcome. Vertices that have less significance in estimating the
pose are then eliminated. The combined effect of Pearson’s
correlation coefficient and wrapper filter reduces the number
of feature vertices significantly (nearly 100 times) but still
retains the core shape necessary for pose estimation as
illustrated in Fig. 8.

Fig. 8. Combined process for reduction of vertices

V. EVALUATION

To determine accuracy of prediction of the joint angles
independently, each joint angle is allowed to iterate through a
range of values with an increment of 1 degree, while the other
joint angles are randomly selected. At every iteration, the

(a) (b)

(c) (d)

(e)

(f) Fig. 9 Comparison of the predicted angles and expected angles (same as input) for a) θ1 b) θ2 c) θ3 d) θ4 e) θ5 f) θ6

(f)

values and corresponding pose image are input to the
framework and pose is estimated. The accuracy of the model
is defined as the root mean squared error (RMSE) between the
predicted joint angle and the actual joint angle input to the
model. Fig. 9 illustrates predicted angles for each joint angle
of the robot arm. They are compared against the expected
angles (which should be equal to the commanded input value),
shown as straight line of gradient 1.

As we move from the 1st joint to the 6th, the portion of the
robot arm that uniquely reflect a change in that joint angle
decreases. Hence the accuracy of prediction also decreases, as
shown in the graphs of Fig. 9. A change in θ6, is uniquely
reflected only by the end effector. Since the end effector used
is very small compared to the rest of the robot arm body, it
contributes to a higher error for prediction of θ6.

A drawback in calculating accuracy is that it can vary
significantly depending on the pose of the robot arm and the
position and orientation of the camera. If a certain portion of
the robot arm is not visible in the image taken by the camera,
then the 3-dimensional predictions corresponding to that part
will be highly inaccurate and would result in inaccurate pose
angles. Even though this error is reduced by the optimizer
described in III C, if a major portion of a link is not visible,
then the error would still be high. Therefore, to analyse this
effect better, accuracy values are calculated for poses with
different levels (approximate) of link visibility and are
presented in Table II.

TABLE II
RMSE FOR DIFFERENT VISIBILITIES OF LINKS

Link Visibility (%) RMSE

1

30 6.7

50 2.7

70 2.2

2

30 10.2

50 3.9

70 3.1

3

30 12.2

50 6.8

70 6.1

4

30 41.2

50 16.1

70 7.4

5

30 34.1

50 10.1

70 6.1

6

30 88.7

50 56.7

70 22.1

In the pose estimator component of the model, the errors

will get accumulated, and therefore the latter joint angles
would have higher errors. However, it can be observed from
Table II that θ5 has lower error than θ4. This is due to the
optimizer module which finds the joint angle from only the
points that correctly represent the 3D robot arm. Therefore,
even though θ5 predicted by the pose estimator initially had

higher error due to accumulated error from θ4, it has been
reduced by the optimizer as the visibility of the 5th link is
better.

VI. CONCLUSION

This paper proposes an approach to determine the pose of
a robot arm manipulator using computer vision and deep
learning, where a single RGB camera is fixed at a distance
from the manipulator. The novelty of this approach is that it
employs deep learning to predict the 3D surface of the robot
arm manipulator from the 2D image without any depth
information, and this 3D surface is used to predict the pose. It
also makes use of optimizer algorithms to keep the predicted
surface points as minimal as possible without affecting the
final accuracy of pose prediction. The manipulator is modelled
virtually with its kinematics and is used to construct the 3D
projections associated with the input 2D image. This study
uses ‘KUKA KR 6 R900 sixx’ robot as an illustrative
example. However, this approach can be applied to any robot
arm by following the same procedure. This approach of pose
estimation does not entirely replace the function of encoders,
rather, it can be used as a reference solution when the encoders
are malfunctioning. The experimental results demonstrate the
feasibility of the proposed approach, and the ability to predict
for poses where the visibility of one or more links are affected.

ACKNOWLEDGEMENT

Authors gracefully acknowledge the financial support
extended by the Senate research committee of the University
of Moratuwa Sri Lanka.

REFERENCES

[1] X. Gratal, J. Bohg, M. Björkman, D. Kragic, “Scene representation and
object grasping using active vision,” IROS 2010 Workshop on
Defining and Solving Realistic Perception Problems in Personal
Robotics, 2010.

[2] F. Zhou, Z. Chi, C. Zhuang, H. Ding, “3D Pose Estimation of Robot
Arm with RGB Images Based on Deep Learning,” 2019 International
Conference on Intelligent Robotics and Applications (ICIRA), 2019,
pp. 541-553, doi: 10.1007/978-3-030-27538-9_46.

[3] J. Bohg, J. Romero, A. Herzog and S. Schaal, "Robot arm pose
estimation through pixel-wise part classification," 2014 IEEE
International Conference on Robotics and Automation (ICRA), 2014,
pp. 3143-3150, doi: 10.1109/ICRA.2014.6907311

[4] Y. Kuo, B. Liu and C. Wu, "Pose Determination of a Robot
Manipulator Based on Monocular Vision," in IEEE Access, vol. 4, pp.
8454-8464, 2016, doi: 10.1109/ACCESS.2016.2633378.

[5] F. Widmaier, D. Kappler, S. Schaal and J. Bohg, "Robot arm pose
estimation by pixel-wise regression of joint angles," 2016 IEEE
International Conference on Robotics and Automation (ICRA), 2016,
pp. 616-623, doi: 10.1109/ICRA.2016.7487185.

[6] J. Miseikis, I. Brijacak, S. Yahyanejad, K. Glette, O. J. Elle and J.
Torresen, "Multi-Objective Convolutional Neural Networks for Robot
Localisation and 3D Position Estimation in 2D Camera Images," 2018
15th International Conference on Ubiquitous Robots (UR), 2018, pp.
597-603, doi: 10.1109/URAI.2018.8441813.

[7] C.H. Lin, C. Kong, and S. Lucey. 2017. “Learning Efficient Point
Cloud Generation for Dense 3D Object Reconstruction.” ArXiv
Preprint ArXiv:1706.07036.

[8] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D.
Fox, S. Birchfield, "Camera-to-Robot Pose Estimation from a Single
Image," 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 9426-9432.

[9] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba and P. Abbeel,
"Domain randomization for transferring deep neural networks from
simulation to the real world," 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 23-30.

