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Abstract— This paper describes a vision based deep learning 
approach to estimate the pose of a robot arm from a single 
camera input, without any depth information. Conventionally, 
pose of robot arm is determined using encoders which sense the 
joint angles, and then the pose of each link (including the end 
effector) relative to the robot base is obtained from the direct 
kinematics of the manipulator. But there may be inaccuracies in 
the determined pose when the encoders or the manipulators are 
malfunctioning. This paper presents an approach based on 
computer vision, where a single RGB camera is fixed at a 
distance from the robot arm. Based on the kinematics of the 
manipulator and the calibrated camera, the input 2-dimensional 
image is reconstructed in 3-dimensional form and the pose of the 
manipulator is determined by means of a deep network model 
trained on synthetic data. Furthermore, a graphical user 
interface (GUI) is developed, which simplifies the output 
interpretation for users who operate the implemented system. 
Finally, the effectiveness of the proposed approach is 
demonstrated via several examples and results are presented. 
The proposed approach cannot entirely replace the function of 
encoders. Instead, it can be treated as a backup method which 
provides a reference solution. 

Keywords—— robot arm, pose estimation, 3D object 
reconstruction, convolutional neural network, deep learning 

I. INTRODUCTION 

A robot arm is a system of serially connected links that are 
moved by rotating about the joints actuated by motors. It is 
considered to be moving in a three-dimensional workspace, 
and the term ‘pose’ is defined as the combined position and 
orientation of all of its links at a given instance. Each joint has 
an encoder mounted inside to measure the degree of actuation. 
For a rotary joint, this encoder-measured value is called ‘joint 
angle’. Therefore, for a robot arm consisting only of rotary 
joints, pose essentially becomes the combination of all the 
joint angles at a given time. It is fundamental for fulfilling the 
feedback requirement of motion control. When the kinematics 
of the robot arm and the current joint angles are known, the 
pose of the robot arm, and thus the position and orientation of 
the end effector relative to the base of the robotic manipulator 
can be computed. However, getting good estimates for these 
angles can be difficult due to inaccuracies such as joint 
frictions or malfunctioning encoders. Therefore in many 
robotic systems, there exists a gap between where the robot 
estimates its arm to be and where it really is. This becomes a 
major issue especially in manipulation tasks. Also, in 
situations where incremental encoders are used instead of 
absolute encoders for robot arms, there will be a need to know 

the previous pose in order to determine the current pose. 
Therefore, additional techniques for estimating the robot 
arm’s pose are considered necessary. This paper proposes a 
visual approach to figuring out the pose of a robotic 
manipulator from an RGB image taken by a single camera. 

An RGB image which is 2-dimensional cannot inherently 
describe the pose, which is a 3-dimensional quality. Most of 
the researches addressing pose determination of a robot arm 
by visual methods rely on additional means to bridge this lack 
of depth information. Most popular approach is to attach 
markers on the surface of the robot arm or create track points 
on images using edge detection algorithms and track them to 
estimate the pose [1][2][3]. The main limitation of this kind of 
approach is that these markers or track points must always be 
in sight of the camera to predict the pose effectively, which 
constraints the estimable poses of the robot arm in space. 

Bohg et al. overcame the need for markers by using RGB-
Depth cameras detect the robot arm in 3D space [4]. In their 
method, the estimation problem was transformed into a 
classification problem where each pixel in a depth image was 
classified to be either robot or background and was input to 
train a random decision forest. Later on, they employed a 
random regression forest trained on synthetically generated 
data for the pose estimation task [5]. This method also used 
depth images to estimate the angular joint positions without 
any prior knowledge from the joint encoders, and the approach 
also worked on real depth images. While this solution is highly 
competent, it still requires depth information that cannot be 
supplied by a regular RGB camera that outputs 2D images. 

Deep Learning has recently been growing as the preferred 
mode of research for studies that involve large volume of data, 
particularly images, as it is capable of solving 2D-image tasks 
such as image classification, object detection, semantic 
segmentation, etc. Few researchers have utilized it for the 
problem of robot arm pose estimation too. Miseikis et al. had 
collected some datasets and trained the multi-objective 
network for robot pose estimation and localization tasks [6]. 
Recent studies have shown that deep learning can also be 
employed to predict 3D volume of objects from 2D images 
with moderate success. Lin et al. proposed a framework to 
efficiently predict the 3D structure of an object in the form of 
point clouds using 2D convolutions [7]. Since a 3D volumetric 
prediction adds a new dimensional information which was not 
present 2D image input, it opens an avenue of research 
potential to employ it for the pose estimation problem, which 
has not been tested till now.  



This paper proposes a simpler, modified approach to 
predict 3D volume from a 2D image of the manipulator and 
use it to estimate the pose. Lin et al. had tested and 
demonstrated their model on everyday domestic objects 
whose models are imported from ShapeNet repository [7]. 
Since the target object in our case is more specific, we opted 
to model our robot arm virtually and create our own synthetic 
database of poses. In our approach, the robot arm extracted 
from a 2D RGB image is reconstructed as a 3D point cloud 
using a Perspective Generator pipeline. Two different 
datasets, one as 2D pose images and other as vertices of the 
3D surface of robot arm, are generated and trained upon to 
achieve this volumetric prediction. This reconstructed point 
cloud is then input to a pose estimator network to predict the 
joint angles. This proposed method cannot entirely replace 
encoders but can be treated as a reference solution to validate 
the accuracy of joint angle readings when there are possible 
malfunctions in the encoders or the manipulator. 

This paper is organized as follows. Section II describes the 
modelling of the robot arm manipulator and its kinematics 
required for the synthetic generation of the pose image 
database. Section III presents the proposed framework to 
determine the pose of the robot arm manipulator. Section IV 
describes the types of input data used and how they are 
prepared. Section V evaluates the model with experiments and 
shows their results. Section VI concludes the contributions of 
this study. 

II. MODELLING OF THE MANIPULATOR 

In order to demonstrate the proposed approach, a ‘KUKA 
KR 6 R900 sixx’ robot arm manipulator is considered in this 
study. It has six degrees of freedom, and all joints are revolute. 
The six joints and their axis of rotations are as illustrated in 
Fig. 1, where the positive and negative directions of each of 
the joint angle is marked. 

The relationship of one joint axis frame’s position and 
orientation with respect to a previous joint axis frame is 
described by transformation matrices. By post-multiplication 
of successive transformation matrices, it is possible to relate 
the position and orientation of any point in the robot arm with 
respect to the base frame of the robot arm manipulator. 

 

Fig. 1.  Joint Angles in selected KUKA Robot Arm 

In order to train the deep learning model to identify a robot 
arm and figure out its pose from a camera image, a large 
database of images from the camera viewpoint with different 
poses of the robot arm should be created. Considering the 
volume of the input database, and repeatability of the process, 
it was decided to model the robot arm manipulator 
synthetically in a virtual environment. Recent studies have 
shown that synthetically generated images can be successfully 
used as training input data for a real-world application with 
minimal deviations in expected output [5][8]. In the study 
conducted by Lee et al, it was shown that by training a neural 
network with images of synthetically modelled robot arm, it 
was possible to find an external camera’s transformation 
matrix with respect to a real robot arm [8]. In our study, each 
link of the selected robot arm manipulator was modelled in 
Blender® software as separate independent objects and were 
applied motion constraints derived from transformation 
matrices to mimic real joints. 

III. PROPOSED APPROACH 

Overview of the system is illustrated in Fig. 2. Table I 
contains the associated nomenclature. The system consists of 
three main components: perspective generator, pose estimator 
and optimizer. 

Fig. 2.  System Overview.  Processes marked with orange arrows are part of the training stage of the model and are not used once the model is trained. 



TABLE I 
NOMENCLATURE 

Symbol Description 

[θ]ref Reference Joint Angles (input during training) 

[θ]predict Joint Angles Predicted by Pose Estimator 

[θ]out Optimized Joint Angles (final output) 

[TP] Pose Transformation Matrix 

[TV] Viewpoint Transformation Matrix 

[TV]-1 Inverse of Viewpoint Transformation Matrix 

[P] initial Untransformed Point Cloud at home position 

[P] ref Transformed Point Cloud at desired pose 

[P] predict Predicted Point Cloud at desired pose 

 

Perspective generator component takes the 2D RGB image 
as input and predicts a 3D representation of the robot arm at 
multiple viewpoints. The suitable form of 3D representation 
was found to be point cloud, where the vertices of the robot 
arm’s outer surface make up the points, as shown in Fig. 3. 
Compared to other forms of 3D representation such as voxels, 
point cloud is light on memory and computation [7]. The 
predicted point cloud is then sent through pose estimator 
component where the joint angles are estimated through linear 
regression. The optimizer component improves the accuracy 
of the model in predicting the joint angles. 

  

Fig. 3.  3D representation of the robot arm 

As indicated in Fig. 2, a point cloud of the robot arm in its 
home position must be input to the system initially, to be 
considered as the untransformed point cloud ([�]�������) . 
Home Position refers to the robot configuration where all joint 
angle values are zero.  

A. Perspective Generator 

This is a fully convolutional neural network (CNN) as 
illustrated in Fig. 4, whose input is an image which is stored 
as an array of size h×v×3, where h and v denote the horizontal 
and vertical pixel resolutions of the image, and 3 indicates the 
RGB colour channel information of each pixel. The output of 
the CNN is a set of 3D point clouds of the same robot arm 
configuration observed from different viewpoints. This is 
stored as an array of size n×m×3, where n denotes the number 
of viewpoints, m denotes the number of points in the robot arm 
point cloud, and 3 indicates the cartesian coordinate 
information of each point. 

 

Fig. 4.  Convolutional Neural Network Architecture 

In order to train the perspective generator to predict the 
viewpoints correctly from an image, the reference viewpoints 
corresponding to the robot arm with the same pose as in the 
image must be given. The generation of these reference 
viewpoints is carried out in two steps. First, the 
untransformed point cloud of the robot arm at its home 
position is transformed to the pose in the image by using Pose 
Transformation matrices. 

When a rotation is made on the nth joint of the robot arm 
point cloud, the reference frame defined at that joint is rotated 
by the same angle of rotation as shown in Fig. 5. All the points 
that belong to the links that lie after the nth joint are affected 
by this rotation. However they remain in the same coordinates 
with respect to nth reference frame before and after the 
rotation, since the frame too has rotated. 

 

Fig. 5.  Coordinate frames before and after transformation 

Therefore, effectively, rotation applied to a point while 
keeping its reference frame fixed is equivalent to applying 
that same rotation to the reference frame while keeping the 
point fixed with respect to the frame. Therefore, the point 
cloud of a jth link (which lies after the nth joint) referred to a 
previous frame can be written as in equation (1)  

[����� �]��� 
��� =  [ �� 

��� ] × [����� �]������� 
�      (1) 

Here [����� �]��� 
���  denotes the point cloud of the link at 

(n-1)th frame after applying the rotation to nth joint. 
[����� �]������� 

�  denotes the point cloud of the link at nth frame 

before rotation.  [ ���
��� ]  denotes the transformation matrix 

from (n-1)th reference frame to nth reference frame after 
rotating the nth frame by the relevant joint angle.   

This can be expanded to refer the point cloud in its base 
frame, by multiplying by the rotation matrices corresponding 
to previous joint frames, as shown in equation (2) 

[����� �]��� 
� =  [ �� 

� ]. . [ �� 
��� ] × [����� �]������� 

�   (2) 

The combined multiplication of all these transformation 
matrices in equation (2) can be considered as the Pose 



Transformation Matrix corresponding to the nth joint (���,��), 

and it should be applied to all the points that lie after the nth 
joint. This procedure should be repeated six times to apply all 
the joint angles progressively from the 1st joint to the 6th joint. 
After all six angles are applied, the transformed point cloud 
will resemble the robot arm in the input image, and is referred 
to as the reference point cloud ([�]���). 

Once the reference point cloud with the same pose as in 
the image is obtained, the second step is to transform that 
point cloud to different viewpoints by using Viewpoint 
Transformation matrices. Each viewpoint is defined as a 
defined rotation of a camera frame (that is at a fixed distance 
away from the base of the robot) in a spherical coordinate 
system having the robot arm base frame at its centre. The shift 
from robot’s base frame to a viewpoint’s camera frame is 
given by a transformation matrix, as in equation (3) 

         [�]��� 
�� = [ �� 

�� ] × [�]��� 
�          (3) 

Here, [�]��� 
��  denotes the first viewpoint of the point 

cloud. [ �� 
�� ]   denotes the transformation matrix from the 

base frame to the first viewpoint’s camera frame, also 
referred to as the first Viewpoint Transformation Matrix 

(���,��). This procedure is repeated until desired number of 

reference viewpoints are obtained. Viewpoints can be varied 
by changing the azimuth angle and polar angle to desired 
values. In this experiment, it was decided to use four 
viewpoints. 

After the reference viewpoints are generated, they are 
compared with predicted viewpoints and the error is used to 
refine the predictions. This training is carried out until the 
error in the final output falls inside a small, fixed margin. 

B. Pose Estimator 

The output from the perspective generator contains robot 
arm point clouds at different viewpoints. The point clouds in 
these viewpoints are then transformed to one common 
viewpoint (same as the viewpoint of the untransformed point 
cloud) using inverse of viewpoint transformation matrices, 
and the average of the coordinate values are taken for each 
point to obtain predicted point cloud ([�]���).  

Now, the untransformed point cloud at the home position, 
and the predicted point cloud at the desired pose are in the 
same viewpoint. Regardless of the poses, the origins of the 1st 
joint’s reference frame in both point clouds will be at the same 
location, meaning that the displacement vector between those 
two frames is zero. 

Therefore, it is possible to apply a rotation to the 1st joint 
of untransformed point cloud in such a way that its 1st link can 
coincide with the 1st link of predicted point cloud, as shown in 
equation (4) 

 [����� �]������� 
� = [���] × [����� �]������� 

�   (4) 

Here, [����� �]������� 
�  denotes the points belonging to 1st 

link in the predicted point cloud expressed in 1st joint’s frame,  
[����� �]������� 

�  denotes the points belonging to 1st link in the 
untransformed point cloud expressed in 1st joint’s frame. 

Since [����� �]������� 
�  and [����� �]������� 

�  are known, the 

unknown variable [���]  can be estimated using linear 
regression, and it results in a 3 × 3 rotation matrix. This 

corresponds to the rotation that should be applied to 1st joint, 
for the points of the 1st link in untransformed point cloud to 
coincide with the points of the 1st link in predicted point cloud. 
The first joint angle (θ1) can then be estimated by comparing 
each element of the generated rotation matrix to a standard 
rotation matrix expressed as a mathematical function. 

After θ1 is estimated, -(θ1) is applied to the predicted point 
cloud, to eliminate the effect of rotation of the 1st joint from 
the rest of the robot.  Now the origins of 2nd joint’s reference 
frame in both point clouds will be at the same location. By 
repeating the same procedure, all six joint angles can be 
estimated through linear regression. 

C. Optimizer 

If a part of the robot arm is not visible in the image, then 
the 3D prediction corresponding to that part can include false 
points and may not represent the pose correctly. Therefore, the 
falsely represented data points have to be eliminated from the 
predicted point cloud for better estimation of joint angles. 

In order to eliminate the falsely predicted points, the 
untransformed point cloud at home position is transformed 
with the predicted set of joint angles by using pose 
transformation matrices. This new, transformed point cloud 
and predicted point cloud are then superimposed and the 
absolute displacement error for each point in both point clouds 
is calculated. The point with the highest value of error is 
considered a false prediction and is therefore eliminated. Joint 
angles are then estimated again by linear regression similar to 
the pose estimator component. This process is repeated until 
the maximum error falls below a predefined value, eliminating 
the false predictions as much as possible, as shown in Fig. 6. 
This results in an optimized set of joint angles which is the 
final output from the system. 

 

Fig. 6.  Representation of predicted and transformed vertices.  

A disadvantage in estimation of pose by regression is that 
the errors in the joint angles will get accumulated when joint 
angles are estimated progressively from the 1st joint. 
However, the main reason for falsely predicted vertices is poor 
visibility and the chances of the first few joints being poorly 
visible are quite low compared to the latter joints. Therefore, 
the effect of error accumulation will not be significant. 

IV. DATA GENERATION 

Two sets of data are required to implement the proposed 
approach: RGB images of the robot arm poses and the 3D 
representation with surface points of the corresponding pose 
in multiple viewpoints. 



The RGB images of poses are generated using Blender’s 
EEVEE render engine. To minimize the gap between real and 
synthetic data, domain randomization techniques were 
employed, including random placement of distractor objects 
in the background, variation of colour intensity, variation of 
texture of wall and floor and variation of number of lights in 
the scene and their position [9]. 

The point cloud representation of the robot arm consists of 
significantly high number of vertices. The computational cost 
of training a neural network to predict all the vertices would 
be very high. Vertices that are closer to each other would have 
less significance in predicting the pose. Therefore, the number 
of vertices have to be reduced to make the model 
computationally efficient and accurate. Reduction in the 
number of vertices is carried out in two steps: Pearson’s 
Correlation Coefficient and Wrapper Feature Selection.  

Pearson’s correlation coefficient is a measure of linear 
correlation between two sets of data. A database of vertex 
coordinates for different poses is created and the dependency 
between each vertex point is calculated using the Pearson’s 
coefficient formula and presented as a matrix. Higher 
adjacency values between two vertices indicate that they are 
highly dependent on each other and are therefore eliminated. 

These reduced vertices are then passed through a wrapper 
filter-based feature selection algorithm. This calculates the 
individual effect of all the vertices in determining the overall 
outcome. Vertices that have less significance in estimating the 
pose are then eliminated. The combined effect of Pearson’s 
correlation coefficient and wrapper filter reduces the number 
of feature vertices significantly (nearly 100 times) but still 
retains the core shape necessary for pose estimation as 
illustrated in Fig. 8. 

 

Fig. 8.  Combined process for reduction of vertices 

V. EVALUATION 

To determine accuracy of prediction of the joint angles 
independently, each joint angle is allowed to iterate through a 
range of values with an increment of 1 degree, while the other 
joint angles are randomly selected. At every iteration, the 

(a) (b) 

(c) (d) 

(e) 

(f) Fig. 9 Comparison of the predicted angles and expected angles (same as input) for a) θ1   b) θ2   c) θ3   d) θ4   e) θ5   f) θ6 

(f) 



values and corresponding pose image are input to the 
framework and pose is estimated. The accuracy of the model 
is defined as the root mean squared error (RMSE) between the 
predicted joint angle and the actual joint angle input to the 
model. Fig. 9 illustrates predicted angles for each joint angle 
of the robot arm. They are compared against the expected 
angles (which should be equal to the commanded input value), 
shown as straight line of gradient 1. 

As we move from the 1st joint to the 6th, the portion of the 
robot arm that uniquely reflect a change in that joint angle 
decreases. Hence the accuracy of prediction also decreases, as 
shown in the graphs of Fig. 9. A change in θ6, is uniquely 
reflected only by the end effector. Since the end effector used 
is very small compared to the rest of the robot arm body, it 
contributes to a higher error for prediction of θ6.  

A drawback in calculating accuracy is that it can vary 
significantly depending on the pose of the robot arm and the 
position and orientation of the camera. If a certain portion of 
the robot arm is not visible in the image taken by the camera, 
then the 3-dimensional predictions corresponding to that part 
will be highly inaccurate and would result in inaccurate pose 
angles. Even though this error is reduced by the optimizer 
described in III C, if a major portion of a link is not visible, 
then the error would still be high. Therefore, to analyse this 
effect better, accuracy values are calculated for poses with 
different levels (approximate) of link visibility and are 
presented in Table II. 

TABLE II 
RMSE FOR DIFFERENT VISIBILITIES OF LINKS 

Link Visibility (%) RMSE 

1 

30 6.7 

50 2.7 

70 2.2 

2 

30 10.2 

50 3.9 

70 3.1 

3 

30 12.2 

50 6.8 

70 6.1 

4 

30 41.2 

50 16.1 

70 7.4 

5 

30 34.1 

50 10.1 

70 6.1 

6 

30 88.7 

50 56.7 

70 22.1 

 
In the pose estimator component of the model, the errors 

will get accumulated, and therefore the latter joint angles 
would have higher errors. However, it can be observed from 
Table II that θ5 has lower error than θ4. This is due to the 
optimizer module which finds the joint angle from only the 
points that correctly represent the 3D robot arm. Therefore, 
even though θ5 predicted by the pose estimator initially had 

higher error due to accumulated error from θ4, it has been 
reduced by the optimizer as the visibility of the 5th link is 
better. 

VI. CONCLUSION 

This paper proposes an approach to determine the pose of 
a robot arm manipulator using computer vision and deep 
learning, where a single RGB camera is fixed at a distance 
from the manipulator. The novelty of this approach is that it 
employs deep learning to predict the 3D surface of the robot 
arm manipulator from the 2D image without any depth 
information, and this 3D surface is used to predict the pose. It 
also makes use of optimizer algorithms to keep the predicted 
surface points as minimal as possible without affecting the 
final accuracy of pose prediction. The manipulator is modelled 
virtually with its kinematics and is used to construct the 3D 
projections associated with the input 2D image. This study 
uses ‘KUKA KR 6 R900 sixx’ robot as an illustrative 
example. However, this approach can be applied to any robot 
arm by following the same procedure. This approach of pose 
estimation does not entirely replace the function of encoders, 
rather, it can be used as a reference solution when the encoders 
are malfunctioning. The experimental results demonstrate the 
feasibility of the proposed approach, and the ability to predict 
for poses where the visibility of one or more links are affected. 
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